
. 

6. 
V. V. Fedorov, The Theory of Experiment Optimization [in Russian], Nauka, Moscow (1969). 
E. A. Golovskii, E. P. Mitsevich, and V. A. Tsymarnyi, "Measurement of ethane density in 
the range 90, 24-270, 21~ to pressures of 604.09 bar," Deposited at VNllEGazprom, No. 
39 (1978), pp. I-ii. 

THREE-REFERENCE-CURVE METHOD IN CONSTRUCTING 

THE EQUATION OF STATE OF A GAS AND A LIQUID 

N. V. Vas'kova, V. F. Lysenkov, and E. S. Platunov UDC 536.71 

A method of constructing the thermal equation of state of a gas and a liquid is 
considered; the method requires information only on three reference curves. 

In [1-4], methods of constructing an equation of state common to gas and liquid were pro- 
posed on the basis of the use of a well-known thermodynamic relation between the thermal param- 
eters of the material and its internal energy. The fundamental feature of these methods is 
the use of reference curves chosen on the thermal surface of the material and satisfying def- 
inite requirements in constructing the equation of state. 

In developing the equation of state within the framework of the above-noted methods, two 
different approaches may be distinguished: in one, only one reference curve is used [i]; in 
the other, two basic curves are used [2-4]. The second approach offers great possibilities. 
On the one hand, it allows a complex multiconstant equation describing both thermal and calor- 
ic properties of the material with near-experimental accuracy to be constructed [2]. On the 
other, the use of two reference curves offers the possibility of developing an equation of 
state of gas and liquid of relatively simple form, requiring a minimum of a priori experiment- 
al information, suitable for use in solving a wide range of practical problems [3, 4]. Equa- 
tions of this class are called engineering equations of state. For example, in [4], the simp- 
lest version of a unified equation of state for gas and liquid obtained on the basis of two 
reference curves -- the ideal-gas curve TIG(P) and the saturation line TS(0) -- was considered: 

p(p, T) RT [ RTs(p) ] TIG (p)--T 
: - - P - -  - - - - P - - P s ( T s )  , (1) 

I ~ J Tm(p)--Ts(p) 

where ps(Ts) is the equation of saturated vapor pressure. 

Note that the term "ideal-gas curve" used here and in many other works is not entirely 
appropriate. Below, the curve of the thermodynamic surface of the material characterized by 
a single compressibility will be called the Bachinskii curve and denoted by TZ(p); Bachinskii 
[5] was one of the first researchers to study the features of this curve. 

Qualitative analysis of Eq. (I) confirms its advantages resulting from the choice of the 
liquid-vapor equilibrium line and the Bachinskii curve as the reference curves. It rigorously 
gives two universal reference curves, is defined over a broad density range from zero to the 
liquid density at the triple point, satisfies the critical conditions and, in the limiting 
case as 0 § 0, ensures transition to the ideal-gas equation. In addition, Eq. (I) is dis- 
tinguished by simplicity of structure, requires a limited quantity of experimental data in 
its construction, and may be used for a series of thermodynamically similar materials. 

Quantitative analysis of Eq. (i) for argon, using a dependence approximating the satura- 
tion and extensibility lines [4], shows that the mean-square deviation of the thermal param- 
eters calculated using Eq. (i) from the reference data is 1.3% with respect to the density, 
for the whole mass of reference experimental data [6-10]. Taking account of the structural 
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TABLE I. Comparison of the Mean-Square Deviations 8pm,S 
of the Reference Experimental Data [6-10] from the Results 
Given by Eqs. (I) and (8), % 

Range ofT, K 

- ~ - ~ v o ~  . ,o v ~ ~ v 

<0,I 

0,1--0,3 

0,3--0,4 

0,4--0,6 

0,6--1 ,0  

:>1,0 

(1) 
(8) 

(1) 
(8) 

(1) - -  

(8) 

(1) 
(8) 

(I) 

(8) - 

(l) 0,779 

(8) o, 587 

0,759 
0,627 

0 , 6 5 2  

O, 435 

1,721 
1,020 

1,752 
0,672 

2,374 
2,053 

0,203 
O, 136 

0,507 
0,359 

1,894 2,470 
0,849 0,298 

3,550 2,772 
1,079 1,281 

4,248 2,747 
3.175 0,715 

2,703 1,019 
2,539 1,141 

1,782 0,35i 
0.583 0,347 

0,579 0,642 
0,379 O, 139 

0,666 
0,131 

0,892 
0,627 

0,594 
0,221 

0,279 
0,430 

0,761 
0,225 

2,442 
0,659 

1,264 
0,062 

0,448 
0,431 

0,889 
0,7~5 

0,7"/6 
1,292 

1,280 
0,598 

3,420 
0,580 

simplicity of Eq. (i), this accuracy of description of the mass of experimental data in the 
density range 14.77 ! p ! 1499.7 kg/m 3 and the temperature range 92.74 ! T ! 423.15~ may be 
regarded as completely acceptable. 

However, analysis of the description of various regions of the thermal surface of argon 
by Eq. (I) reveals (Table i) one of its significant deficiencies: unsatisfactory accuracy 
of the calculation in the low-density region, where the mean-square deviation with respect 
to the density is a few percent. 

Several variants allowing the deficiencies seen in Eq. (i) to be eliminated may be pro- 
posed. One of these is analyzed in the present work. 

As in the methods considered above, the well-known thermodynamic relation between the 
internal energy of the material and its thermal parameters is taken as the starting point: 
p2(3u/3P)T = --Ta[3(p/T)3T]o. If some curve TREI(p) is taken as the reference curve on the 
thermal surface of the material, an equation ot the following form may be obtained from this 
thermodynamic relation: 

T (O~/O~)T 
P(9, T ) =  PRE:, ( P ) . T _ p ~ T  I T ~ dT. (2) 

TREZ (9) TREfI(O) 

The final functional form of the equation of state will depend on the form of the expres- 
sion approximating the internal energy. For example, in [4], u(p, T) was specified in the 
form: u(p, T) = UIG(T) + u1(p)/T n, where u1(p) is a structural function of the internal en- 
ergy, the specific form of which is found using the second reference curve. In particular, 
setting n = 1 and finding u:(p) using the phase-equilibrium line, Eq. (I) may be obtained 
from Eq. (2) [4]. The tendency to improve the accuracy of the equation of state derived 
from Eq. (2) somewhat complicates the expression for u(p, T), while retaining the overall 
features of its structure 

I 
u (p, T) = uiG (T) @ ul ( 9 ) ~  + u2(9) T.--- 7- ; (3) 

u~(p )  and u2(P)  may be  found  i f  two f u r t h e r  r e f e r e n c e  c u r v e s  TREa(p) and TREa(P) a r e  i n t r o -  
duced i n t o  c o n s i d e r a t i o n .  F i r s t  o f  a l l ,  Eq. (3) i s  s u b s t i t u t e d  i n t o  Eq. ( 2 ) ,  t o  g i v e  

P(9, T ) =  p ~ ' ( p )  T @ p ~ T { u I ( 9 ) F ~ ( T ) + u ~ ( 9 ) F ~ ( T ) }  ' (4) T~., (p) 
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where 

i [ x in+  
F,~(x) .... (n@ 1)x 'H-~ {1 -- TRE,(O) 

F,~(x) = I { I - - [  x ] "+ '}  
(m -~ 1)x "`+' TRE , (9) " 

Now Eq. (4) is written for the curves TRE=(p) and TREs(p): 

p ~  ~ (9) PRE ~ (9) 
Tp~ ~ (9) Tp~ ~ (9) 

PPm3 (9) P~t  (9) 
TRE3 (p) -- TRE1 (p) 

- -  + 9~ [ul (P) F. (Tp,s + tt'2 (9) Fm(TRE 2)], 

+ p 2 [ul (P) F,~ (TRE3) -[- U.~ (p) F,, (TRE3)]. 

(5) 

As well as the well-known functions specifying the three reference curves, Eq. (5) in- 
cludes the as-yet-undetermined functions ua(p) and ua(p). Solving Eq. (5) for u':(p) and 
U'a(p), simple manipulations lead to the result 

ul (p) = TRg2 (9) TREI (P) • 

X- F,. (TRE3) 
F,, (TI~.~) Fm (TRI~ z) --  F,~ (TRE2) F,  (Tp~ 3) - -  (6) 

__[  PREz(P) PR.I~,(P) ] Fra(TRE2) } 
TREa (p) TKE~ (9) F,  (TRK2) Fm (TRE3) --  F,, (TRE2) Fn (TRE.3) ' 

-~-2 {[ P~3(9) ' Pnn,(P) ] 
4 (o) = 

X �9 F,,. (Tp.s _ 

F,~ (TREz) Fm (Tt~ a) -- Fm (TRE2) Fn (.TREa) 

[ Pp,s (9) PKE, (9) ] F,~ (TRE 3) ] 
- -  [-TRE2(p) Tn.E~(p) J F,,(TRF.2)F,~(TREs)--F,~(Tp,s [" 

The expressions obtained for the components of the internal energy in Eq. (6) are then 
substituted into Eq. (4), to give the equation of state for gas and liquid structurally in- 
cluding three reference curves 

Pa~,@ 
P(9, T)-- TRg.,(p) T ( 1 - - O ~ - - O ~ ) +  

T T 
+ pw.z (P) o, + p ~  (~) % 

TRE 2 (9) TRE3 (9) 

(7) 

where 

O1 = 
F~ (T) Fm (TRE 3) - -  F,~ (T Rga) F., (T) 

F,~ (T RE2) Fm (T~  s) --  Fm( T RE2) Fn (T p,~3) 
F= (TP~2) Fm (r) - -  Fm (TRE 2) F~ (T) 

Fn (TRE 2) Fm (TKE3) - -  Frn (TRE2) Fn (TRE 3) 

It is simple to establish that the equation obtained satisfies all three reference 
curves. In fact, if T is set equal to TREa(p), then 02 = 0, 0, = I, and Eq. (7) gives p(p, 
TREa(P)) = PRE=(P). If T = TRE3(p), then G= = i, @~ = 0, and as a result p(p, TREa(P)) = 
PRE~(P)- Finally, when T = TRE~(p), Fn(TREx) = Fm(TRE,) = 0 and hence 0~ = @a = 0. Conse- 

quently, p(p, TRE~(p)) = PRE~(P)" 
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Fig. I. Dependence of the pressure on the critical isotherm 
plotted from the experimental data in the single-phase region 
on the density: I) from data at the isotherm T = I18.15~ 
2) 148.15; 3) 150.65; 4) 153.15; 5) 163.15; 6) 233.15; 7) 
248.15; 8) 273.15; 9) 298.15; i0) 323.15; ii) 348.15; 12) 
373.15; 13) 423.15. PCI, MPa; p, kg/mZ.!O -s. 

After establishing the general form of the equation of state being constructed and pro- 
ceeding to its quantitative analysis, it is necessary to resolve the question of the curves 
chosen on the thermal surface of the material as reference curves. They must satisfy defin- 
ite requirements: they must be universal, have a broad range of definition, and be described 
by dependences that are sufficiently simple in form. 

Previous work [I~4] has shown the expediency of taking the reference curves in the form 
of the liquid-~Tapor equilibrium line and the Bachinskii curve, which completely correspond 
to the imposed requirements. In considering the question of the third reference curve, the 
use of the critical isotherm might he one possible option. The advantage of this approach 
is that the critical isotherm has a broad range of definition, and also that improvement in 
the description of both the critical region and the low-density region by the equation of 
state may be facilitated in choosing the appropriate approximating dependence for this curve. 
Some of the complications associated with the use of the critical isotherm as the reference 
curve will be noted below. 

It is evident from Eq. (8) that, in choosing the critical isotherm, the liquid--vapor 
equilibrium line, and the Bachinskii curve as the reference curves, the equation of state 
takes the form 

T RTo 
P(9, T ) - -  PCI(9) T(1--O~K--O2K)+ps(Ts)  Ts(9) T~ - - O ~ K  ~ - O2K, (8) 

where 

~)IK = 

0 2 K  =~ 

F,~. (x) -- 

F , . ~  ( x )  - -  

F,~h (T) F,~h (Tz) - -  F,~7~ (T z) F,~t,. (T) 

F~l~ (Ts) Fm~ (Tz) - -  Fm~ (Ts) F.h (. z) 

F~k (T s) F,~, (T) -- F~h (T s) F.,~ (T) 
F ~  (Ts) Fmh (T z) - -  F,~f~ (Ts) F.~, (Tz) ' 

(n@ 1)x "~1 | T K ] [ '  

Here PKI(P) is the dependence of the pressure on the density on the critical isotherm. Argon 
is chosen as the test material to check Eq, (8), since reliable experimental information on 
the thermal data for argon exists both in the single-phase region and on the liquid-vapor 
equilibrium line [6-10]. In addition, Eq. (i) is also tested for argon using the same mass 
of experimental data. This should simplify the comparative analysis of Eqs. (i) and (8), 
The phase~equilibrium lines -- Ts(P) and Ps(Ts) -- and the Bachinskii curve Tz(p) appear as 
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component elements in Eqs. (i) and (8). The parameters TZ(P) used here and in [4] are chosen 
in accordance with [I11: TB = 407.76~ Po = I. 87"I03 kg/m 3. The expressions for TS(P) and 
and Ps(Ts) are taken from [4] 

Ts(p)= TK(1--DslaPl'm+ ~D#Ap"), 
n ~ : 4  

lnPs(Ts) = B_~Ts L + Bo + B j T s  + B2(T~: - -  Ts) 2-~ + B:~T3s, 

(9) 

(lO) 

where B-I, ..., B3, DS, and Din are coefficients; the plus sign refers to the case when p > 
PK and the minus sign to p < PK. These coefficients take the following values: B-I = 
--9.355833,10:, Bo = 7.62625~, BI = 2.584851"10 -2 , B= = 4.463291.10 -~, B~ =--4.173631.10 -7 , 
D S = 0 . 2 2 9 4 1 9 9 ;  f o r  t h e  c a s e  p > PK, IInl l={4,  5, 6}, IID~II ={0.1270440, - -4-46682"10-~,  7.32122.10-3}; 
f o r  t h e  c a s e  p ~  PK; n = 1 0 n  1 H- 1, l i n l ] i  = {1, 4,!0}, IID21I-- {0,154750, 4 . 4 5 5 2 0 . 1 0  - = ,  0 . 5 7 1 2 7 8 } ;  

= 0.112, B = 0.342, T K = 150.66~ PK = 0.5351"i0~ kg/m3 [12]. 

Thus, all the structural elements of Eq. (8) have been determined, except for the equa- 
tion of the critical isotherm PCi(P). For argon, the literature does not give reliable ex- 
perimental information on PCi(O). However, this does not exclude the possibility of testing 
the efficacy of Eq. (8). A possible procedure is as follows: since all the elements of Eq. 
(8) except PCI(P) are known, PCI(P) may be calculated from Eq. (8) on the basis of experi- 
mental data on the pressure. This calculation must be performed for a wide temperature range. 
If the data obtained are in good agreement (within the limits of the required error), Eq. (8) 
may be appropriate for the given range of state parameters, 

This procedure has been performed on the basis of the experimental data of [6-10]; p in 
Eq. (8) is taken both in the form of experimental pressure values peEp from [6-10] and values 
shifted by • from peEp. The results of the calculation are shown in Fig. I and indicate 
good agreement of the data obtained on the basis of different initial isotherms; in principle, 
this proves the efficacy of Eq. (8). To get a more precise idea of the quantitative possibili- 
ties of Eq. (8), the following procedure may be followed: on the basis of the data obtained 
(Fig, I), an equation PCI(0) is constructed and used in Eq. (8). 

The mass of data on PCI(P) obtained in this way in the range from 14.77 to 1499.6 kg/m 3 
are approximated using the dependence proposed in [13], of the form 

I 

i t 
Ape I (Ap) = sign(Ap)[ApI~ exp {2 A~Apj (II) 

Using a specially written program in Fortran-EC, the following values of the coefficients 

A i in Eq. (ii) are obtained: 

Ao = 1.4t8429; A1 L_ --0.08875245; A 2 = --2.279224; 

A 3 = 4.855103; A~ = 1.101300; As = - - 1 2 . 5 3 9 0 0 ;  A 6 - -  4.909804; 

A7 = 14.27654; A8 --- ---9,770325; A, = --6,722862;  

Alo = 6.793004; A n  ---- 0.3832445; AI~ . . . . .  1.624724; 

Ala:= 0.3751509; 6 ~- 4.52 I12]; p~<- 4.859 MPa 
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The quality of the approximation of the mass of data on the critical isotherm by Eq. (Ii) 
is characterized in Fig. 2. 

Thus, all the structural elements appearing in the equation of state constructed by the 
proposed method, Eq. (8), have been determined; the next step is quantitative analysis of Eq, 
(8). To this end, the thermal data in the given ranges 14.77 ! P < 1499.6 kg/m 3 and 92.74 < 
T < 423.15~ are calculated from Eq. (8), and the results obtained are compared with experi- 
mental data [6-10]. The potentialities of Eq. (8) are completely characterized by the data 
in Table I. It is evident that the introduction of an extra reference curve in comparison 
with Eq. (i) improves the description of low-density region by the equation of state. There- 
by, the accuracy of the density calculation from Eq. (8) is practically independent of the 
region of state where the analysis is performed. In the region of relatively large tempera- 
tures as T -7 TTp , in the gas region, and as p ~ oLTp, the error of the density calculation is 
0.4-0.9% on average. The mean-square error ~pm.s of the description of the whole mass of 
data considered [6-10] is 0.8%. For comparison, it may be noted again that for Eq. (I) 6p m.s 
is 1.3%. 

Summing up, it may be stated that the method proposed here is applicable for the develop- 
ment of an engineering equation of state of gas and liquid. 

In the further perfection and development of this approach, the basic problems are evi- 
dently as follows: i) the development of methods of deriving the critical-isotherm equation 
from diverse experimental data; 2) investigation of the influence of the accuracy with which 
the reference curves are specified on the accuracy of the equation being specified; and 3) 
generalization of the equation of state of the form in Eqs. (i) and (8) to a series of thermo- 
dynamically similar materials using the basic conclusions of similarity theory [14]. 

NOTATION 

p, pressure; T, absolute temperature; p, density; R, universal gas constant; ~t, molar 
mass; PK, TK, and OK, critical parameters; Ap = (p -- PK)/PK; Ap = (P -- OK)/PK; ~, ~I, 6, criti- 
ca] indices; u(p, T) and UlG(T), specific internal energy of a real material and an ideal gas; 
u~(p), u=(p), components of the internal energy; u'~(p), u'=(p), derivatives of the correspond- 
ing functions with respect to the density; PRE~(P), TRE~(p), PRE=(P), TRE2(p), PRE~(P), and 
TRE3(p) , equations of reference curves; TZ(p) , Bachinskii curve; TS(O) , saturation line; 
Ps(Ts), elasticity curve; PCI(O), critical isotherm; TB, Boyle temperature; Po, density 
obtained by extrapolation of the Bachinskii curve to T = 0; TTp , temperature of the material 
at the triple point; pLTp , density of liquid at triple point; gp = (pcalc _ pexp)/peXp; Ai ' 
Bi, D• constants (the plus sign corresponds to p > PK and the minus sign to p ~ PK)' 
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THERMOPHYSICAL PROPERTIES OF FODDER GRASS SEEDS 

T. K. Korolik, V. A. Golubev, and V. V. Kharitonov UDC 536.63:664.723 

The article presents the values of critical heat in the range --50 to +200~ 
thermal conductivities at 25~ and pressures of 100.641 kPa, and an equation 
for determining the thermotolerance of fodder grass seeds. 

When the seed farming of fodder grasses was put on an industrial basis, it was necessary 
to work out new technologies, machines, and equipment for the postharvest treatment of a 
large amount of seeds. An important place in the technological process is held by dryers. 
For their engineering calculations it is indispensable to have reliable data on the heat 
capacity, critical temperatures, and thermal conductivity of grass seeds with a view to the 
variety of their species; at present there are practically no such data in the literature. 

Grass seeds are friable, finely disperse, thermolabile material with normalized particle 
diameter of 0.9-4.0 mm. In regard to their thermophysical properties they belong to the bad 
heat conductors. 

The literature [1-4] presents fairly broadly and fully theoretical and experimental in- 
vestigations of friable materials of inorganic origin such as quartz sand, pearlite, silica 
gel, and various metallic powders. 

However, by their structure, physicochemical properties, and intervals of critical tem- 
peratures, fodder grass seeds differ considerably from the investigated materials. Most sim- 
ilar to them in structure and properties are the seeds of cereal crops [5], but the actual 
differences between them are such that there is no basis for using their technological char- 
acteristics in calculations of thermal installations intended for drying grass seeds. 

Investigations carried out with seeds of fodder grasses [6] and of oil-producing crops 
[7] for determining their thermotolerance do not reveal fully their thermophysical proper- 
ties with the variety of species taken into account. 

It is well known that the specific heat makes it possible to determine the amount of 
heat necessary for heating a mass to be dried, thermal conductivity permits determining the 
rate and duration of heating, and the critical temperature determines the boundary of the 
vital activity of the internal structures of seeds. 
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